Optimal Design of Mix Proportion of Hot-Mix Epoxy Asphalt Mixture for Steel Bridge Decks and Its Anti-Slip Performance
Auteur(s): |
Wen Nie
Duanyi Wang Junjian Yan Xiaoning Zhang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 11 avril 2022, n. 4, v. 12 |
Page(s): | 437 |
DOI: | 10.3390/buildings12040437 |
Abstrait: |
To solve the problem of the insufficient anti-slip performance of steel bridge deck wear layers, a kind of new epoxy asphalt mixture FAC-10 (Full Epoxy Asphalt Content is shortened to FAC) is proposed in this paper based on the design method of an asphalt-rich mix proportion. The FAC-10 pavement layer was tracked and tested using a pavement texture tester to study the change in its skid resistance under traffic load from a macroscopic and microscopic perspective. The influence of traffic load on the deformation of the FAC-10 wearing layer was also simulated and analyzed via lab tests. The results show that the new FAC-10 epoxy asphalt mixture is superior to the traditional EA-10 epoxy asphalt mixture in terms of skid resistance. During the monitoring and testing period, the three-dimensional (3D) structure depth of the pavement surface showed a decreasing trend followed by an increasing trend, while the density of microtexture distribution showed the opposite trend. After a wheel pressure rutting test, the rutted slab showed slight deformation and a certain degree of reduction in 3D structure depth; the deformation of the rutted slab mainly occured in the surface layer, and the internal deformation was negligible. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.82 MB
- Informations
sur cette fiche - Reference-ID
10664388 - Publié(e) le:
09.05.2022 - Modifié(e) le:
01.06.2022