0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

An Open-Source Framework for Modeling RC Shear Walls Using Deep Neural Networks

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2023
Page(s): 1-17
DOI: 10.1155/2023/7953869
Abstrait:

Reinforced concrete (RC) shear walls macroscopic models are simplified strategies able to simulate the complex nonlinear behavior of RC shear walls to some extent, but their efficacy and robustness are limited. In contrast, microscopic models are sophisticated finite element method (FEM) models that are far more accurate and reliable. However, their elevated computational cost turns them unfeasible for most practical applications. In this study, a data-driven surrogate model for analyzing RC shear walls is developed using deep neural networks (DNNs). The surrogate model is trained with thousands of FEM simulations to predict the characteristic curve obtained when a static nonlinear pushover analysis is performed. The surrogate model is extensively tested and found to exhibit a high degree of accuracy in its predictions while being extremely faster than the detailed FEM analysis. The complete framework that made this study possible is provided as an open-source project. The project is developed in Python and includes a parametric FEM model of an RC shear wall in OpenSeesPy, the training and validation of the DNN model in TensorFlow, and an application with an interactive graphical user interface to test the methodology and visualize the results.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2023/7953869.
  • Informations
    sur cette fiche
  • Reference-ID
    10736304
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    03.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine