0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

On Building Predictive Digital Twin Incorporating Wave Predicting Capabilities: Case Study on UMaine Experimental Campaign - FOCAL

Auteur(s):








Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Physics: Conference Series, , n. 1, v. 2745
Page(s): 012001
DOI: 10.1088/1742-6596/2745/1/012001
Abstrait:

The response of floating wind turbines (FWT) are susceptible to stochastic wave variations. For the optimal operation of FWT, a comprehensive understanding of the phaseresolved wave dynamics and the consequential system response is crucial for real-time monitoring and control. A multi-variate, multi-step, long short term memory (MLSTM), a type of recurrent neural network (RNN) is used to capture complex system dynamics for real-time application. Results indicate that the integration of a wave prediction-reconstruction (WRP) model substantially enhances prediction accuracy by 50% on average relative to the baseline model. The improvement is consistent across various wave extremity and prediction horizons, thereby significantly broadening the scope for timely and precise predictive capabilities.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1742-6596/2745/1/012001.
  • Informations
    sur cette fiche
  • Reference-ID
    10777704
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine