0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s): ORCID


ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 10, v. 5
Page(s): 88
DOI: 10.3390/infrastructures5100088
Abstrait:

The goal of civil engineering has always been the research and implementation of methods, technologies, and infrastructures to improve the community’s quality of life. One of the branches of civil engineering that has the strongest effect on progress is transport. The quality of transport has a profound economic and social impact on our communities regarding trade (freight transport) and city livability (public transport systems). However, innovation is not the only way to improve the features above-mentioned, especially public transport, considering that it is usually beneficial to enhance and repurpose vehicles with appropriate adjustments to offer more efficient services. Other perspectives that influence public transport systems are the costs and times of design and construction, maintenance, operating costs, and environmental impact, especially concerning CO₂ emissions. Considering these issues, among the various types of existing public transport systems, those of the so-called Bus Rapid Transit (BRT) offer worthwhile results. The BRT system is a type of public road transport operated by bus on reserved lanes, and it is significantly profitable, especially from an economic point of view, in areas where there are existing bus routes. Nonetheless, for the construction of works minimization, it is closely linked to other features that improve its usefulness, depending on the vehicles’ quality such as capacity, but above all, the propulsion or driving autonomy that would guarantee high efficiency. This paper introduces an analysis of some BRT systems operating worldwide, presenting the background, general technical features, and the correlation with autonomous vehicles.

Copyright: © 2020 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10723154
  • Publié(e) le:
    22.04.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine