0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

On-board Strain Measurement of a Cryogenic Composite Tank Mounted on a Reusable Rocket using FBG Sensors

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 3, v. 5
Page(s): 205-214
DOI: 10.1177/1475921706058016
Abstrait:

This article presents the real-time strain measurement of a composite liquid hydrogen (LH2) tank using fiber Bragg grating (FBG) sensors. The tank was composed of carbon fiber reinforced plastic (CFRP), and an aluminum liner was fabricated by the filament winding method and mounted on a reusable rocket. This rocket (vertical takeoff and landing) is called a reusable rocket vehicle test (RVT) and was developed by the Institute of Space and Astronautical Science of the Japan Aerospace Exploration Agency (ISAS/JAXA). Considering the high operational pressure and the iterative use of the tank, its structural integrity must be guaranteed. Thus, the authors have attempted a real-time strain measurement of the composite LH2tank using FBG sensors during rocket operations. First, the adhesive properties of the FBG sensors were investigated at cryogenic temperatures. As a result, UV-coated FBG sensors and polyurethane adhesives were adopted. An onboard FBG demodulator was then developed to be mounted on the rocket and its performance was assessed. Finally, the strain measurement was attempted during the flight experiments of the RVT using the onboard FBG demodulator. FBG sensors were glued on the surface of the composite LH2tank and connected to the onboard FBG demodulator. During these rocket operations, the output of the onboard FBG demodulator was continuously monitored via a telemetry system. The results obtained by the demodulator agreed well with those of the conventional foil strain gage.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921706058016.
  • Informations
    sur cette fiche
  • Reference-ID
    10561537
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    26.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine