0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The Numerical Simulation Study of Pumping Airflow Driven by Wind Pressure for Single- and Multi-Room Buildings

Auteur(s):






Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 13
Page(s): 3066
DOI: 10.3390/buildings13123066
Abstrait:

Pumping airflow occurs in single-sided natural ventilation buildings when the openings are located on the leeward side; the direction of airflow through the building then changes periodicity. In order to propose a calculation method of the ventilation rates for single-room buildings and analyze the pumping ventilation for multi-room buildings, the CFD method with an SST k-ω turbulence model was used to conduct numerical simulation in this study, which is verified by other experimental results. Firstly, the qualitative and quantitative characteristics of pumping ventilation were investigated for a single-room building with two openings. The results show that the steady-state method underestimates the ventilation flow rates, and the unsteady-state method captures the microstructures of the flow better. Secondly, the vortex-shedding and indoor airflow oscillation frequencies were analyzed based on transient simulation for a single-room building. It was found that both of them increase with air speed. Then, the factors affecting ventilation flow rates were analyzed. A calculation method for dimensionless ventilation rates is proposed. Finally, the pumping ventilation for a multi-room building was numerically simulated. The ventilation rate for a middle room is greater than that for a corner room, and the ventilation rate for any room in a multi-room building is greater than the single-room building given the same room size and the same incoming wind speed. The findings of this paper are helpful for the design and evaluation of natural ventilation.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10754285
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine