Numerical Simulation of the Nonlinear Flow Properties in Self-Affine Aperture-Based Fractures
Auteur(s): |
Xin Zhou
Jianlong Sheng Ruili Lu Zuyang Ye Wang Luo |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-11 |
DOI: | 10.1155/2021/6687878 |
Abstrait: |
In order to study the effect of fracture geometry on the nonlinear flow properties in aperture-based fractures, a fractal model based on the self-affinity is proposed to characterize the three-dimensional geometry of rough-walled fractures. By solving the N–S (Navier–Stokes) equation directly, the relationships between the Forchheimer-flow characteristics, fractal dimension, and standard deviation of the aperture have been obtained. The Forchheimer equation is validated to describe the nonlinear relationship between flow rate and pressure gradient. For lower flow rate, the influence of the fractal dimension almost can be ignored, but the linear coefficient increases and the hydraulic aperture decreases with increasing standard deviation of the aperture, respectively. For larger flow rate, the nonlinear coefficient increases with the growth of the standard deviation of the aperture and fractal dimension. Thus, an empirical relationship between the nonlinear coefficient, fractal dimension, and standard deviation of aperture is proposed. In addition, the critical Reynolds number decreases with the increase of the standard deviation of the aperture and the fractal dimension, and the numerical results are generally consistent with the experimental data. |
Copyright: | © Xin Zhou et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.04 MB
- Informations
sur cette fiche - Reference-ID
10609915 - Publié(e) le:
08.06.2021 - Modifié(e) le:
17.02.2022