0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Numerical Analysis of Piled-Raft Foundations on Multi-Layer Soil Considering Settlement and Swelling

Auteur(s): ORCID
ORCID

ORCID
ORCID
ORCID
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 12
Page(s): 356
DOI: 10.3390/buildings12030356
Abstrait:

Numerical modelling can simulate the interaction between structural elements and the soil continuum in a piled-raft foundation. The present work utilized a two-dimensional finite element Plaxis 2D software to investigate the settlement, swelling, and structural behavior of foundations during the settlement and swelling of soil on various soil profiles under various load combinations and geometry conditions. The field and laboratory testing have been performed to determine the behavior soil parameters necessary for numerical modelling. The Mohr–Coulomb model is utilized to simulate the behavior of soil, as this model requires very few input parameters, which is important for the practical geotechnical behavior of soil. From this study, it was observed that, as soil is soft and has less stiffness, the un-piled raft was not sufficient to resists and higher loads and exceeds the limits of settlement. Piled raft increases the load carrying capacity of soil, and the lower soil layer has a higher stiffness where the pile rests, decreasing the significant settlement. Further, the effects of (L/d) and (s/d) of the pile and Krs on the settlement are also discussed, detailed numerically under different scenarios. The swelling of expansive soil was also simulated in Plaxis 2D with an application of positive volumetric strain. The above-mentioned parametric study was similarly implemented for the heaving of foundation on expansive soil.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10661275
  • Publié(e) le:
    23.03.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine