0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Novel Three-Stage Collision-Risk Pre-Warning Model for Construction Vehicles and Workers

Auteur(s): ORCID


ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 8, v. 14
Page(s): 2324
DOI: 10.3390/buildings14082324
Abstrait:

Collision accidents involving construction vehicles and workers frequently occur at construction sites. Computer vision (CV) technology presents an efficient solution for collision-risk pre-warning. However, CV-based methods are still relatively rare and need an enhancement of their performance. Therefore, a novel three-stage collision-risk pre-warning model for construction vehicles and workers is proposed in this paper. This model consists of an object-sensing module (OSM), a trajectory prediction module (TPM), and a collision-risk assessment module (CRAM). In the OSM, the YOLOv5 algorithm is applied to identify and locate construction vehicles and workers; meanwhile, the DeepSORT algorithm is applied to the real-time tracking of the construction vehicles and workers. As a result, the historical trajectories of vehicles and workers are sensed. The original coordinates of the data are transformed to common real-world coordinate systems for convenient subsequent data acquisition, comparison, and analysis. Subsequently, the data are provided to a second stage (TPM). In the TPM, the optimized transformer algorithm is used for a real-time trajectory prediction of the construction vehicles and workers. In this paper, we enhance the reliability of the general object detection and trajectory prediction methods in the construction environments. With the assistance afforded by the optimization of the model’s hyperparameters, the prediction horizon is extended, and this gives the workers more time to take preventive measures. Finally, the prediction module indicates the possible trajectories of the vehicles and workers in the future and provides these trajectories to the CRAM. In the CRAM, the worker’s collision-risk level is assessed by a multi-factor-based collision-risk assessment rule, which is innovatively proposed in the present work. The multi-factor-based assessment rule is quantitatively involved in three critical risk factors, i.e., velocity, hazardous zones, and proximity. Experiments are performed within two different construction site scenarios to evaluate the effectiveness of the collision-risk pre-warning model. The research results show that the proposed collision pre-warning model can accurately predict the collision-risk level of workers at construction sites, with good tracking and predicting effect and an efficient collision-risk pre-warning strategy. Compared to the classical models, such as social-GAN and social-LSTM, the transformer-based trajectory prediction model demonstrates a superior accuracy, with an average displacement error of 0.53 m on the construction sites. Additionally, the optimized transformer model is capable of predicting six additional time steps, which equates to approximately 1.8 s. The collision pre-warning model proposed in this paper can help improve the safety of construction vehicles and workers.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10795012
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine