0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Novel Support-Vector-Machine-Based Grasshopper Optimization Algorithm for Structural Reliability Analysis

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 6, v. 12
Page(s): 855
DOI: 10.3390/buildings12060855
Abstrait:

Aiming at the characteristics of high computational cost, implicit expression and high nonlinearity of performance functions corresponding to large and complex structures, this paper proposes a support-vector-machine- (SVM) based grasshopper optimization algorithm (GOA) for structural reliability analysis. With this method, the reliability problem is transformed into an optimization problem. On the basis of using the finite element method (FEM) to generate a small number of samples, the SVM model is used to construct a surrogate model of the performance function, and an explicit expression of the implicit nonlinear performance function under the condition of small samples is realized. Then, the GOA is used to search for the most probable point (MPP), and a reasonable iterative method is constructed. The MPP information of each iteration step is used to dynamically improve the reconstruction accuracy of the surrogate model in the region that contributes most to the failure probability. Finally, with the MPP after the iteration as the sampling center, the importance sampling method (ISM) is used to further infer the structural failure probability. The feasibility of the method is verified by four numerical cases. Then, the method is applied to a long-span bridge. The results show that the method has significant advantages in computational accuracy and computational efficiency and is suitable for solving structural reliability problems of complex engineering.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10688582
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine