0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Novel SMFL-Based Assessment Method for Corrosion Nonuniformity of Rebar and Its Application in Reliability Analysis of Corroded RC Beam

Auteur(s): ORCID

ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2024
Page(s): 1-18
DOI: 10.1155/2024/9988034
Abstrait:

The reliability of corroded reinforced concrete (RC) structures relies on the accurate minimum cross-sectional area of corroded rebar. In this study, the accurate morphologies and self-magnetic flux leakage (SMFL) field strengths of twenty-eight non-uniformly corroded rebars were obtained using 3D structural light scanning and micromagnetic detection technologies, based on which three indices of the SMFL field variation ratio dH, the corrosion non-uniformity degree dSn, and the cross-sectional area ratio K0.25 are proposed. The statistical results show that the probability densities of dSn and K0.25 obey the Weibull distribution and Gamma distribution at the 95% confidence level, respectively, and their distribution parameters are linearly or inversely proportional to dH. The probability density distribution of the minimum cross-sectional area of corroded rebar can be determined using indices dSn and K0.25, based on which a feasible SMFL-based reliability assessment method of corroded RC structures is proposed. The case study of a real specific corroded RC beam shows that the reliability assessment error of the SMFL-based method is only 1.2%, which is much lower than the 20.7% error of the existing method. This SMFL-based method provides a novel idea that can automatically and accurately assess the effect of rebars’ corrosion non-uniformity on the reliability of specific in-serviceRC structures.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/9988034.
  • Informations
    sur cette fiche
  • Reference-ID
    10769980
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    29.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine