0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Novel Cement-Based Materials Using Seawater, Reused Construction Waste, and Alkali Agents

Auteur(s):


ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 14
Page(s): 3696
DOI: 10.3390/buildings14113696
Abstrait:

This study aimed to develop marine alkali paste (MAP) produced using seawater (SW), recyclable particle material from paste specimens (RPPs), and alkali agents including NaOH (NH) and Na2O·3SiO₂ (NS). The physicochemical properties and strength of the MAP were investigated with uniaxial compression tests (UCTs), an Energy-Dispersive Spectrometer (EDS), X-ray diffraction (XRD), and thermal-field emission scanning electron microscopy (SEM). The key information on the MAP preparation and experiments, including mix ratios, ages, curing, and sub-specimen locations, were recorded during the investigation. The results indicated that 8-day-old MAP prepared with NS reached a maximum compressive strength of 8.3 MPa, while 8-day-old NH-prepared specimens achieved up to 5.59 MPa. By 49 days, NS-prepared MAP had strengths between 5.46 MPa and 7.34 MPa, while the strength of NH-prepared MAP ranged from 3.59 MPa to 5.83 MPa. The key hydration products were Friedel’s salt (3CaO·Al₂O₃·CaCl2·10H2O, FS), xCaO·SiO₂·nH2O (C-S-H), CaO·Al₂O₃·2SiO₂·4H2O (C-A-S-H), and Na2O·Al₂O₃·zSiO₂·2H2O (N-A-S-H). C-S-H was generated under the critical curing and working conditions in SW. C-A-S-H development contributed to C-S-H network compaction. N-A-S-H development helped in resistance to SO42− erosion, thereby cutting down ettringite (Ca6Al2(SO4)3(OH)12·26H2O) development. The active ion exchange between MAP and SW mainly involving SO42− and Cl− led to the significant formation of FS at the interface of C-A-S-H and xCaO·Al₂O₃·nH2O (C-A-H). Therefore, FS generation inhibited SO42− and Cl− corrosion in the MAP and rebounded the interface cracks of the hydration products. Consequently, FS contributed to the protection and development of C-S-H in the MAP, which ensured the suitability and applicability of the MAP in marine environments.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810534
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    25.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine