0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Nonlinear Vibrations of Rectangular Laminated Composite Plates With Different Boundary Conditions

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 4, v. 11
Page(s): 673-695
DOI: 10.1142/s0219455411004294
Abstrait:

Nonlinear vibrations of rectangular laminated composite plates with different boundary conditions are studied by using different nonlinear plate theories. In particular, numerical results for (i) the classical Von Kárman theory, (ii) the first_order shear deformation theory (SDT), and (iii) the third-order SDT are compared. The nonlinear response to harmonic excitation in the frequency neighborhood of the fundamental mode is investigated. Numerical investigation is carried out by using pseudo-arclength continuation method and bifurcation analysis. The boundary conditions of the plates are: simply supported with movable edges, simply supported with immovable edges, and clamped (CL) edges. For thick plates (thickness ratio 0.1), the strongest hardening nonlinear behavior is observed for CL plates, while the simply supported movable plates are the ones with the weakest nonlinearity among the three different boundary conditions studied here. Differences among the three nonlinear plate theories are large for thick laminated plates. For all the other cases, the first_order SDT, with shear correction factor [Formula: see text], and the higher-order SDT give almost coincident results.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455411004294.
  • Informations
    sur cette fiche
  • Reference-ID
    10352958
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine