0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Nonlinear Vibration of A Cantilever With A Derjaguin–müller–toporov Contact End

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 1, v. 8
Page(s): 25-40
DOI: 10.1142/s0219455408002533
Abstrait:

In this paper, the principal resonance is investigated for a cantilever with a contact end. The cantilever is modeled as an Euler–Bernoulli beam, and the contact is modeled by the Derjaguin–Müller–Toporov theory. The problem is formulated as a linear nonautonomous partial-differential equation with a nonlinear autonomous boundary condition. The method of multiple scales is applied to determine the steady-state response. The equation of response curves is derived from the solvability condition of eliminating secular terms. The stability of steady-state responses is analyzed by using the Lyapunov-linearized stability theory. Numerical examples are presented to highlight the effects of the excitation amplitude, the damping coefficient, and the coefficients related to the contact.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455408002533.
  • Informations
    sur cette fiche
  • Reference-ID
    10353127
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine