0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Nonlinear modeling with confidence estimation using Bayesian neural networks

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Electronic Journal of Structural Engineering, , v. 4
Page(s): 108-118
DOI: 10.56748/ejse.445
Abstrait:

There is a growing interest in the use of neural networks in civil engineering to model complicated nonlinearity problems. A recent enhancement to the conventional back-propagation neural network algorithm is the adoption of a Bayesian inference procedure that provides good generalization and a statistical approach to deal with data uncertainty. A review of the Bayesian approach for neural network learning is presented. One distinct advantage of this method over the conventional back-propagation method is that the algorithm is able to provide assessments of the confidence associated with the  network’s predictions. Two examples are presented to demonstrate the capabilities of this algorithm. A third example considers the practical application of the Bayesian neural network approach for analyzing the ultimate shear strength of deep beams.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.56748/ejse.445.
  • Informations
    sur cette fiche
  • Reference-ID
    10778931
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine