• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Nonlinear Method for Component Separation of Dam Effect Quantities Using Kernel Partial Least Squares and Pseudosamples

  1. Salazar Fernando (2017), "Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations" in Archives of Computational Methods in Engineering, v. 24, n. 1, Springer Science and Business Media LLC, p. 1-21

    https://doi.org/10.1007/s11831-015-9157-9

  2. in Journal of the Power Division, v. 82 (1956), p. 1
  3. Stojanovic B. (2013), "Adaptive system for dam behavior modeling based on linear regression and genetic algorithms" in Advances in Engineering Software, v. 65, Elsevier BV, p. 182-190

    https://doi.org/10.1016/j.advengsoft.2013.06.019

  4. Hu Jiang (2019), "Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks" in Structural Health Monitoring, v. 18, n. 2, SAGE Publications, p. 546-562

    https://doi.org/10.1177/1475921718760309

  5. Salazar F. (2018), "Discussion on “Thermal displacements of concrete dams: Accounting for water temperature in statistical models”" in Engineering Structures, v. 171, Elsevier BV, p. 1071-1072

    https://doi.org/10.1016/j.engstruct.2015.08.001

  6. Mata J. (2011), "Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models" in Engineering Structures, v. 33, n. 3, Elsevier BV, p. 903-910

    https://doi.org/10.1016/j.engstruct.2010.12.011

  7. in Fresenius Environmental Bulletin, v. 22 (2013), p. 500
  8. in Journal of Hydraulic Engineering, v. 39 (2008), p. 1390
  9. Kim Yong-Seong (2008), "Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model" in Computers and Geotechnics, v. 35, n. 3, Elsevier BV, p. 313-322

    https://doi.org/10.1016/j.compgeo.2007.09.006

  10. Ranković Vesna (2014), "Predicting piezometric water level in dams via artificial neural networks" in Neural Computing and Applications, v. 24, n. 5, Springer Science and Business Media LLC, p. 1115-1121

    https://doi.org/10.1007/s00521-012-1334-2

  11. in Journal of Hydraulic Engineering, v. 37 (2006), p. 331
  12. in Geomatics and Information Science of Wuhan University, v. 33 (2008), p. 469
  13. in Journal of Machine Learning Research, v. 2 (2001), p. 97
  14. Huang Hao (2015), "Safety Monitoring of a Super-High Dam Using Optimal Kernel Partial Least Squares" in Mathematical Problems in Engineering, v. 2015, Hindawi Limited, p. 1-13

    https://doi.org/10.1155/2015/571594

  15. Postma G.J. (2011), "Opening the kernel of kernel partial least squares and support vector machines" in Analytica Chimica Acta, v. 705, n. 1-2, Elsevier BV, p. 123-134

    https://doi.org/10.1016/j.aca.2011.04.025

  16. Godoy José L. (2014), "New contributions to non-linear process monitoring through kernel partial least squares" in Chemometrics and Intelligent Laboratory Systems, v. 135, Elsevier BV, p. 76-89

    https://doi.org/10.1016/j.chemolab.2014.04.001

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10403261
  • Publié(e) le:
    28.12.2019
  • Modifié(e) le:
    28.12.2019