0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Nondestructive Evaluation of FRP-Concrete Interface Bond due to Surface Defects

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-10
DOI: 10.1155/2019/2563079
Abstrait:

Carbon fiber-reinforced polymer (CFRP) laminates have been successfully used as externally bonded reinforcements for retrofitting, strengthening, and confinement of concrete structures. The adequacy of the CFRP-concrete bonding largely depends on the bond quality and integrity. The bond quality may be compromised during the CFRP installation process due to various factors. In this study, the effect of four such construction-related factors was assessed through nondestructive evaluation (NDE) methods, and quantification of the levels of CFRP debonding was achieved. The factors were surface cleanliness, surface wetness, upward vs. downward application, and surface voids. A common unidirectional CFRP was applied to small-scale concrete samples with factorial combinations. Ground-penetrating radar and thermography NDE methods were applied to detect possible disbonds at CFRP-concrete interfaces. Thermography was found to clearly detect all four factors, while the GPR was only effective for detecting the surface voids only. The thermal images overpredicted the amount of debonded CFRP areas by about 25%, possibly due to scaling errors between the thermograph and the sample surface. The maximum debonded CFRP area in any sample was about two percent of the total CFRP area. This is a negligible amount of debonding, showing that the factors considered are unlikely to significantly affect the laminate performance or any CFRP contribution to the concrete member strength or confinement.

Copyright: © 2019 Nur Yazdani et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10275857
  • Publié(e) le:
    18.01.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine