0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Non-deterministic Approach for Reliability Evaluation of Steel Portal Frame

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Civil Engineering Journal, , n. 8, v. 5
Page(s): 1684-1697
DOI: 10.28991/cej-2019-03091363
Abstrait:

In recent years, more researches on structural reliability theory and methods have been carried out. In this study, a portal steel frame is considered. The reliability analysis for the frame is represented by the probability of failure, P_f, and the reliability index, β, that can be predicted based on the failure of the girders and columns. The probability of failure can be estimated dependent on the probability density function of two random variables, namely Capacity R, and Demand Q. The Monte Carlo simulation approach has been employed to consider the uncertainty the parameters of R, and Q. Matlab functions have been adopted to generate pseudo-random number for considered parameters. Although the Monte Carlo method is active and is widely used in reliability research, it has a disadvantage which represented by the requirement of large sample sizes to estimate the small probabilities of failure. This is leading to computational cost and time. Therefore, an Approximated Monte Carlo simulation method has been adopted for this issue. In this study, four performances have been considered include the serviceability deflection limit state, ultimate limit state for girder, ultimate limit state for the columns, and elastic stability. As the portal frame is a statically indeterminate structure, therefore bending moments, and axial forces cannot be determined based on static alone. A finite element parametric model has been prepared using Abaqus to deal with this aspect. The statistical analysis for the results samples show that all response data have lognormal distribution except of elastic critical buckling load which has a normal distribution.

Copyright: © 2019 Hawraa Qasim Jebur, Salah Rohaima Al-Zaidee
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10365136
  • Publié(e) le:
    24.08.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine