^ New Maxwell Creep Model Based on Fractional and Elastic-Plastic Elements | Structurae
0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

New Maxwell Creep Model Based on Fractional and Elastic-Plastic Elements

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-11
DOI: 10.1155/2020/9170706
Abstrait:

Creep models are mainly used to describe the rheological behaviour of geotechnical materials. An important research focus for studying creep in geotechnical materials is the development of a model with few parameters and good simulation performance. Hence, in this study, by replacing the Newtonian dashpot and spring in the classical Maxwell model with fractional and elastic-plastic elements, a new Maxwell creep model based on fractional derivatives and continuum damage mechanics was developed. One- and three-dimensional (1D/3D) creep equations of the new Maxwell creep model were derived. The 1D creep equation of the new model was used to fit existing creep data of rock salt, and the 3D creep equation was used to fit the creep data of remolded loess. The model curves matched the creep data very well, showing considerably higher accuracy than other models. Furthermore, a sensitivity study was carried out, showing the effects of the fractional derivative orderβand exponentαon the creep strain of rock salt. This new model is simple with few parameters and can effectively simulate the complete creep behaviour of geotechnical materials.

Copyright: © 2020 Hao Tang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10414032
  • Publié(e) le:
    26.02.2020
  • Modifié(e) le:
    02.06.2021