0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

New Fuzzy-Heuristic Methodology for Analyzing Compression Load Capacity of Composite Columns

Auteur(s):


ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 13
Page(s): 125
DOI: 10.3390/buildings13010125
Abstrait:

Predicting the mechanical strength of structural elements is a crucial task for the efficient design of buildings. Considering the shortcomings of experimental and empirical approaches, there is growing interest in using artificial intelligence techniques to develop data-driven tools for this purpose. In this research, empowered machine learning was employed to analyze the axial compression capacity (CC) of circular concrete-filled steel tube (CCFST) composite columns. Accordingly, the adaptive neuro-fuzzy inference system (ANFIS) was trained using four metaheuristic techniques, namely earthworm algorithm (EWA), particle swarm optimization (PSO), salp swarm algorithm (SSA), and teaching learning-based optimization (TLBO). The models were first applied to capture the relationship between the CC and column characteristics. Subsequently, they were requested to predict the CC for new column conditions. According to the results of both phases, all four models could achieve dependable accuracy. However, the PSO-ANFIS was tangibly more efficient than the other models in terms of computational time and accuracy and could attain more accurate predictions for extreme conditions. This model could predict the CC with a relative error below 2% and a correlation exceeding 99%. The PSO-ANFIS is therefore recommended as an effective tool for practical applications in analyzing the behavior of the CCFST columns.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10711982
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine