Neural Network Material Modelling/Medžiagų neuroninių tinklų fizikiniai modeliai
Auteur(s): |
Jamshid Ghaboussi
Xiping Wu Gintaras Kaklauskas |
---|---|
Médium: | article de revue |
Langue(s): | letton |
Publié dans: | Journal of Civil Engineering and Management, août 1999, n. 4, v. 5 |
Page(s): | 250-257 |
DOI: | 10.3846/13921525.1999.10531472 |
Abstrait: |
Straipsnyje supažindinama su neuroninių tinklų metodo taikymų, kuriant fizikinius medžiagų modelius. Neuroninių tinklų metodas, pagrįstas žmogaus smegenų darbo modeliavimo principais, tik šį dešimtmetį praktiškai pradėtas taikyti įvairiose mokslo srityse. Pirmieji du šio straipsnio autoriai pirmieji pasaulyje pritaikė neuroninių tinklų metodą. fizikiniams modeliams kurti. Neuroninį tinklą sudaro mazgai (neuronai), tarpusavyje sujungti ryšiais. Mazgai yra suskirstyti į grupes, vadinamas sluoksniais: pradinių duomenų ir rezultatų sluoksniai bei tarpiniai sluoksniai (1 pav.). Mazgai charakterizuojami aktyvumu, o ryšiai stiprumu. Mazgo aktyvumas nustatomas kaip į jį ateinančių ryšsių stiprumo ir atitinkamų mazgų aktyvumo sandaugų suma. Ryšių stiprumas, kuris gali turėti tiek teigiamą, tiek neigiamą. skaitinę reikšmę, nustatomas neuroninio tinklo „mokymo” metu. Tinklas dažniausiai „mokomas” pradinių duomenų ir rezultatų pavyzdžiu pagal tam tikras mokymo taisykles. Iš visų žinomų neuroninių tinklų bene plačiausiai taikomas grįžtamasis neuroninis tinklas (backpropagation neural network). Straipsnyje supažindinama su grįžtamuoju neuroniniu tinklu, jo „mokymo” taisyklėmis, dinaminiais mazgų kūrimo principais bei tinklų kūrimo metodologija. Straipsnio pabaigoje pateikiama medžiagų fizikinių modelių kūrimo neuroniniais tinklais metodologija. |
Copyright: | © 1999 The Author(s). Published by VGTU Press. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
0.93 MB
- Informations
sur cette fiche - Reference-ID
10363774 - Publié(e) le:
12.08.2019 - Modifié(e) le:
02.06.2021