• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Multiphysics Coupling Model of Rock Mass considering Damage and Disturbance and Its Application

Auteur(s):





Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-9
DOI: 10.1155/2018/3067120
Abstrait:

Aiming at the deficiency of the conventional multiphysics coupling model, the deterioration of strength parameters was considered by defining elastoplastic damage variables, and the heterogeneity of strength parameters was expressed by the Weibull distribution function. In addition, the relation between effective stress and the anisotropic permeability matrix was established, and the blast was transformed into a load boundary condition. On this basis, an improved multiphysics coupling model that considered damage and disturbance was constructed, while a corresponding finite element calculation program was developed. Taking an excavation stope as the object, the characteristics of the mining-induced stress, seepage, and failure were analyzed by an improved multiphysics coupling model and compared with actual detection data. The results show that the improved model reflects the extent and range of mining-induced failure more accurately and fits well with the actual detection. These results are compared to the conventional multiphysics coupling model and a single physics model. It is indicated that the improved multiphysics coupling model and corresponding calculation program are effective and rational.

Copyright: © 2018 Wei Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10176429
  • Publié(e) le:
    30.11.2018
  • Modifié(e) le:
    11.07.2019