0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Multifield Environmental Analysis and Hazards Prevention of Steeply Inclined Deep Coal Mining

Auteur(s):
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-12
DOI: 10.1155/2021/6651088
Abstrait:

Due to the different in-situ stress level, mining stress state, and surrounding rock properties of steeply inclined deep coal mining, the mutation mechanism of underground engineering rock mass is complex. This paper studies the cause and control of mining disaster of steeply inclined deep coal resources in Wudong coal mine. The results show that the structural field is the key of multifield analysis, and particularly a large area of suspended roof is easy to expand energy and induce dynamic hazards. By means of borehole television- (BT-) transient electromagnetic (TEM) detection, it is found that there are hidden dangers of roof safety and suspected water hazards in Wudong coal mine, and the roof above the detection area (+575 m south roadway to 2250–2600 m) is in a suspended state; there is a suspected water-rich area in the range of 2320–2340 m and 2390–2400 m, and the lowest vertical height is +613.8–+615.5 m. Exploring and releasing the water in the aquifer effectively reduced the water pressure; in +575 m south roadway, +587 m measure roadway, and blasting chamber, the suspended roof blasting holes are constructed. Microseism- (MS-) TEM monitoring shows that the apparent resistivity fluctuates significantly, the microseismic energy and events have been significantly reduced, and it is maintained at a low level for two consecutive weeks, confirming the effectiveness of the stable release of the high-stress roof in the +575 m near stope area; at the same time, the safeguard measures for long-term roof dynamic monitoring are constructed.

Copyright: © Xingping Lai et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10609878
  • Publié(e) le:
    08.06.2021
  • Modifié(e) le:
    17.02.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine