0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Multi-scale Information Retrieval for BIM using Hierarchical Structure Modelling and Natural Language Processing

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Information Technology in Construction, , v. 26
Page(s): 409-426
DOI: 10.36680/j.itcon.2021.022
Abstrait:

Building Information Modelling (BIM) captures numerous information the life cycle of buildings. Information retrieval is one of fundamental tasks for BIM decision support systems. Currently, most of the BIM retrieval systems focused on querying existing BIM models from a BIM database, seldom studies explore the multi-scale information retrieval from a BIM model. This study proposes a multi-scale information retrieval scheme for BIM jointly using the hierarchical structure of BIM and Natural Language Processing (NLP). Firstly, a BIM Hierarchy Tree (BIH-Tree) model is constructed to interpret the hierarchical structure relations among BIM data according to Industry Foundation Class (IFC) specification. Secondly, technologies of NLP and International Framework for Dictionaries (IFD) are employed to parse and unify the queries. Thirdly, a novel information retrieval scheme is developed to find the multi-scale information associated with the unified queries. Finally, the retrieval method proposed in this study is applied to an engineering case, and the practical results show that the proposed method is effective.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.36680/j.itcon.2021.022.
  • Informations
    sur cette fiche
  • Reference-ID
    10627531
  • Publié(e) le:
    05.09.2021
  • Modifié(e) le:
    05.09.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine