0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

MSFA-Net: A Multiscale Feature Aggregation Network for Semantic Segmentation of Historical Building Point Clouds

Auteur(s):



ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 14
Page(s): 1285
DOI: 10.3390/buildings14051285
Abstrait:

In recent years, research on the preservation of historical architecture has gained significant attention, where the effectiveness of semantic segmentation is particularly crucial for subsequent repair, protection, and 3D reconstruction. Given the sparse and uneven nature of large-scale historical building point cloud scenes, most semantic segmentation methods opt to sample representative subsets of points, often leading to the loss of key features and insufficient segmentation accuracy of architectural components. Moreover, the geometric feature information at the junctions of components is cluttered and dense, resulting in poor edge segmentation. Based on this, this paper proposes a unique semantic segmentation network design called MSFA-Net. To obtain multiscale features and suppress irrelevant information, a double attention aggregation module is first introduced. Then, to enhance the model’s robustness and generalization capabilities, a contextual feature enhancement and edge interactive classifier module are proposed to train edge features and fuse the context data. Finally, to evaluate the performance of the proposed model, experiments were conducted on a self-curated ancient building dataset and the S3DIS dataset, achieving OA values of 95.2% and 88.7%, as well as mIoU values of 86.2% and 71.6%, respectively, further confirming the effectiveness and superiority of the proposed method.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10787631
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine