0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Modeling Soil Behavior with Machine Learning: Static and Cyclic Properties of High Plasticity Clays Treated with Lime and Fly Ash

Auteur(s): ORCID
ORCID

ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 15
Page(s): 288
DOI: 10.3390/buildings15020288
Abstrait:

Soils may not always be suitable to fulfill their intended function. Soil improvement can be achieved by mechanical or chemical methods, especially in transportation facilities. L and FA additives are frequently used as chemical improvement additives. In this study, two natural clay samples with extreme and very high plasticity were improved by using L and FA admixtures, and their properties under static and repeated loads were investigated by ML methods. Two soil samples from two different sites were analyzed. In this study, eight datasets were used. There are 14 inputs, including specific gravity (Gs), void ratio (eo), sieve analysis (+No.4, −No.200), clay size, LL, plastic limit (PL), plasticity index (PI), linear shrinkage (Ls), shrinkage limit (SL), cure day, agent, clay type, and agent percentage. The outputs are index and swelling properties (compressive, percent), compressive strengths, modulus of elasticity, and compressibility properties in soaked and non-soaked conditions. Prediction is attempted with different ML (ML) techniques. ML techniques used for regression (such as Decision Tree Regression (DTR) and K-nearest neighbors (KNN)). SHapley Additive Explanations (SHAP), the impact of inputs on outputs were observed, and it was generally found that PL and LL had the highest impact on outputs. Different performance metrics are used for evaluation. The results showed that these ML techniques can predict the static and cyclic properties of extremely high plasticity clays with high performance (R2 > 0.99). These results highlight the general applicability of the used ML models on different datasets containing soil properties.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10816126
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine