Modeling of Energy Efficiency for Residential Buildings Using Artificial Neuronal Networks
Auteur(s): |
José Antonio Álvarez
Juan Ramón Rabuñal Dolores García-Vidaurrázaga Alberto Alvarellos Alejandro Pazos |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-10 |
DOI: | 10.1155/2018/7612623 |
Abstrait: |
Increasing the energy efficiency of buildings is a strategic objective in the European Union, and it is the main reason why numerous studies have been carried out to evaluate and reduce energy consumption in the residential sector. The process of evaluation and qualification of the energy efficiency in existing buildings should contain an analysis of the thermal behavior of the building envelope. To determine this thermal behavior and its representative parameters, we usually have to use destructive auscultation techniques in order to determine the composition of the different layers of the envelope. In this work, we present a nondestructive, fast, and cheap technique based on artificial neural network (ANN) models that predict the energy performance of a house, given some of its characteristics. The models were created using a dataset of buildings of different typologies and uses, located in the northern area of Spain. In this dataset, the models are able to predict the U-opaque value of a building with a correlation coefficient of 0.967 with the real U-opaque measured value for the same building. |
Copyright: | © 2018 José Antonio Álvarez et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.36 MB
- Informations
sur cette fiche - Reference-ID
10222704 - Publié(e) le:
01.12.2018 - Modifié(e) le:
02.06.2021