0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Modeling of a bio-inspired soft arm with semicircular cross section for underwater grasping

Auteur(s): ORCID






Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 12, v. 30
Page(s): 125029
DOI: 10.1088/1361-665x/ac3403
Abstrait:

Fluid-filled fiber-reinforced elastomeric enclosures (FREEs) with a circular cross section, inspired by the muscle structure of octopus arms, are a popular choice for actuators because of their high power density and relatively low manufacturing cost. However, the shape, flexibility, and grasping force of FREEs are slightly different from those of real octopus arms. A soft arm with a semicircular cross section has better bending performance than that of FREEs with a circular cross section and can thus more easily achieve flexible grasping. In this paper, to better describe the deformation of soft arm shape in an underwater environment, a model based on a constrained maximization volume is proposed for a semicylindrical soft arm. In particular, the model takes into account the effect of the expansion of the bottom on the semicylindrical soft arm and the proposed analytical model is used to analyze the factors that affect the helix radius of the soft arm, including the helix angles of the fibers, wall thickness, and inner radius of the soft arm. Then a method for fabricating soft arms with a semicircular cross section (length: 700 mm) and a method for extracting the helix radius are also proposed. Finally, a series of driving experiments is performed to measure the accuracy of the model using a hydraulic platform. Experimental results show that the maximum error rate of the helix radius is between 8.99% and 12.29%. The helix radius can be varied from 74.3 mm to 176 mm by changing the parameters of the soft arm.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ac3403.
  • Informations
    sur cette fiche
  • Reference-ID
    10636314
  • Publié(e) le:
    30.11.2021
  • Modifié(e) le:
    30.11.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine