0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Model Predictive Control for Heat Supply at Building Thermal Inlet Based on Data-Driven Model

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 12
Page(s): 1879
DOI: 10.3390/buildings12111879
Abstrait:

At present, the traditional control strategy of heating systems is still unable to achieve building heating on demand, which enhances the energy consumption of heating and affects the thermal comfort of buildings. Therefore, this study puts forward a novel data-driven MPC for building thermal inlet, which allows the optimal operation of the district heating system and has been verified by simulation with three public buildings. In this method, the indoor temperature at the next moment reaches the temperature set value by changing the current flow rate. First, based on the energy consumption monitoring platform and the measured data of the buildings, the building indoor temperature prediction model at the next moment is established by using long short_term memory (LSTM). Compared with subspace model identification (SMI), LSTM has higher prediction accuracy, and the R2 was about 0.9 in three buildings. Second, the particle generated by particle swarm optimization, which represents the flow variation, is input to the trained LSTM to predict the indoor temperature. By minimizing the objective function, the optimal flow change at the current time can be calculated. The results showed that the MPC based on a data-driven model can adjust the flow rate in time to maintain a stable indoor temperature with ±0.5 °C error. In addition, when the temperature setting needs to be changed, the indoor temperature can reach the new set value in 3 h, which outperforms the PID control. The method proposed in this paper can greatly reduce the influence of regulation lag by adjusting the flow in advance.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700391
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine