0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Mode I Fracture Behaviors between Cement Concrete and Asphalt Concrete Layer

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-11
DOI: 10.1155/2021/6658023
Abstrait:

Asphalt overlay or concrete overlay on existing pavements is a common strategy for pavement maintenance. Interlayer bonding performance between asphalt and concrete layers is a critical concern in achieving optimal long-term structural performance due to the possible cracking along the interface. In this study, bonding behaviors of asphalt concrete interface were characterized by employing mode I fracture tests conducted at −10 and 25°C, respectively. Two typical interface conditions were manually prepared. A tack coat material was applied on the interface with four distinct rates: 0.1, 0.2, 0.3, and 0.4 L/m². Parameters including fracture strength, stress intensity factor (KIC), facture energy (GF), and energy release rate (J integral) were selected to evaluate the fracture performance. Results showed that optimum tack coat rates were 0.1 and 0.3 L/m² for specimens with unmilled and milled surfaces. At the optimum tack coat rates, KIC and GF increased with the increase of interface roughness at −10°C, while, at 25°C, J integral of specimens with unmilled interface was larger than that of specimens with milled interface at the optimum tack coat rates. Analysis of variance (ANOVA) was conducted to evaluate the significance of the factors on the fracture loads and found that surface roughness is significant at −10°C and becomes nonsignificant at 25°C. Temperature and tack coat rate were significant factors considering a given interface.

Copyright: © Zhongping Tang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10561196
  • Publié(e) le:
    10.02.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine