0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

MLA-TCN: Multioutput Prediction of Dam Displacement Based on Temporal Convolutional Network with Attention Mechanism

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-19
DOI: 10.1155/2023/2189912
Abstrait:

The displacement of concrete dams effectively reflects their structural integrity and operational status. Therefore, establishing a model for predicting the displacement of concrete dams and studying the evolution mechanism of dam displacement is essential for monitoring the structural safety of dams. Current data-driven models utilize artificial data that cannot reflect the actual status of dams for network training. They also have difficulty extracting the temporal patterns from long-term dependencies and obtaining the interactions between the targets and variables. To address such problems, we propose a novel model for predicting the displacement of dams based on the temporal convolutional network (TCN) with the attention mechanism and multioutput regression branches, named MLA-TCN (where MLA is multioutput model with attention mechanism). The attention mechanism implements information screening and weight distribution based on the importance of the input variables. The TCN extracts long-term temporal information using the dilated causal convolutional network and residual connection, and the multioutput regression branch achieves simultaneous multitarget prediction by establishing multiple regression tasks. Finally, the applicability of the proposed model is demonstrated using data on a concrete gravity dam within 14 years, and its accuracy is validated by comparing it with seven state-of-the-art benchmarks. The results show that the MLA-TCN model, with a mean absolute error (MAE) of 0.05 mm, a root-mean-square error (RMSE) of 0.07 mm, and a coefficient of determination (R2) of 0.99, has a comparably high predictive capability and outperforms the benchmarks, providing an accurate and effective method to estimate the displacement of dams.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2023/2189912.
  • Informations
    sur cette fiche
  • Reference-ID
    10734845
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    03.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine