0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Mitigation of Ground Vibration due to Collapse of a Large-Scale Cooling Tower with Novel Application of Materials as Cushions

Auteur(s): ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Shock and Vibration, , v. 2017
Page(s): 1-14
DOI: 10.1155/2017/6809246
Abstrait:

Ground vibration induced by the collapse of large-scale cooling towers in nuclear power plants (NPPs) has recently been realized as a potential secondary disaster to adjacent nuclear-related facilities with demands for vibration mitigation. The previous concept to design cooling towers and nuclear-related facilities operating in a containment as isolated components in NPPs is inappropriate in a limited site which is the cases for inland NPPs in China. This paper presents a numerical study on the mitigation of ground vibration in a “cooling tower-soil-containment” system via a novel application of two materials acting as cushions underneath cooling towers, that is, foamed concrete and a “tube assembly.” Comprehensive “cooling tower-cushion-soil” models were built with reasonable cushion material models. Computational cases were performed to demonstrate the effect of vibration mitigation using seven earthquake waves. Results found that collapse-induced ground vibrations at a point with a distance of 300 m were reduced in average by 91%, 79%, and 92% in radial, tangential, and vertical directions when foamed concrete was used, and the vibrations at the same point were reduced by 53%, 32%, and 59% when the “tube assembly” was applied, respectively. Therefore, remarkable vibration mitigation was achieved in both cases to enhance the resilience of the “cooling tower-soil-containment” system against the secondary disaster.

Copyright: © 2017 Feng Lin, Qiheng Zhong
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10676298
  • Publié(e) le:
    29.05.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine