0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A method for real-time error detection in low-cost environmental sensors data

Auteur(s): ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart and Sustainable Built Environment, , n. 4, v. 8
Page(s): 338-350
DOI: 10.1108/sasbe-10-2018-0051
Abstrait:

Purpose

The purpose of this paper is to propose a simple, fast, and effective method for detecting measurement errors in data collected with low-cost environmental sensors typically used in building monitoring, evaluation, and automation applications.

Design/methodology/approach

The method combines two unsupervised learning techniques: a distance-based anomaly detection algorithm analyzing temporal patterns in data, and a density-based algorithm comparing data across different spatially related sensors.

Findings

Results of tests using 60,000 observations of temperature and humidity collected from 20 sensors during three weeks show that the method effectively identified measurement errors and was not affected by valid unusual events. Precision, recall, and accuracy were 0.999 or higher for all cases tested.

Originality/value

The method is simple to implement, computationally inexpensive, and fast enough to be used in real-time with modest open-source microprocessors and a wide variety of environmental sensors. It is a robust and convenient approach for overcoming the hardware constraints of low-cost sensors, allowing users to improve the quality of collected data at almost no additional cost and effort.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1108/sasbe-10-2018-0051.
  • Informations
    sur cette fiche
  • Reference-ID
    10779884
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine