0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Method for Measuring the Mass of a Railroad Car Using an Artificial Neural Network

Auteur(s):
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 2, v. 9
Page(s): 31
DOI: 10.3390/infrastructures9020031
Abstrait:

The fast, convenient, and accurate determination of railroad cars’ load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the rail web under the influence of a static load transmitted through a railway wheel. According to the proposed method, a railroad car’s weight can be determined from the rail deformation values. A solid model of a track section, including a railroad tie, rail, and wheel, is developed, and a multi-physics simulation technique that allows for the determination of the values of deformations and mechanical stresses in the strain gauge installation areas is presented. The influence of the loaded mass, the temperature of the rail, and the wheel position relative to the strain gauge location is considered. We also consider the possibility of using artificial neural networks to determine railroad cars’ weight without specifying the coordinates of the wheel position. The effect of noise in the data on the accuracy of determining the railroad car weight is considered.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10776407
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine