Mechanical properties test of plant fiber reinforced cementitious composites
Auteur(s): |
Junping He
Zongfeng He Qing Cui Xinyuan Wang Xuansheng Cheng |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Electronic Journal of Structural Engineering, juillet 2023, n. 3, v. 23 |
Page(s): | 25-30 |
DOI: | 10.56748/ejse.234383 |
Abstrait: |
In this paper, a new type of plant fiber-reinforced cementitious composite (PFRCC) is developed. Compared with ordinary cement-based materials, its toughness is greatly improved. To investigate the tensile and bending mechanical properties of PFRCC, four kinds of PFRCC panels with different thicknesses were developed, and the axial tensile test and bending test of the PFRCC panel were designed. The results show that with the increase in the thickness of the PFRCC panel, the bearing capacity increases gradually. The peak tensile strain is about 0.022 %, which is 1.47-2.2 times that of the matrix cement mortar. The average tensile strength is about 2.52 MPa, which is slightly higher than that of the matrix cement mortar. The bending failure load of the PFRCC panel increases with the increase in thickness, but its peak displacement decreases gradually. The bending strength of the PFRCC panel is about 13.5 MPa, which is 2.7 times that of the matrix cement mortar. It shows that the addition of plant fiber can not only increase the toughness of cement mortar but also improve its tensile and bending strength. The above research provides a theoretical basis for the application of PFRCC panels in practical engineerings such as permanent formwork of foundation beams and light-gauge steel stud concrete composite external wall panels. |
- Informations
sur cette fiche - Reference-ID
10778661 - Publié(e) le:
12.05.2024 - Modifié(e) le:
12.05.2024