0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Mechanical Performance of Date-Palm-Fiber-Reinforced Concrete Containing Silica Fume

Auteur(s): ORCID
ORCID
ORCID

ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 10, v. 12
Page(s): 1642
DOI: 10.3390/buildings12101642
Abstrait:

The use of date palm fiber (DPF) as natural fiber in concrete and mortar continues to gain acceptability due to its low-cost and availability. However, the main disadvantage of DPF in cement-based composites is that it reduces compressive strength and increases the porosity of the composite. Hence, for DPF to be efficiently used in concrete, its negative effects must be counteracted. Therefore, in this study, silica fume was employed as supplementary cementitious material to alleviate the negative effects of DPF on the strength and porosity of concrete. The DPF was added in different dosages of 0%, 1%, 2%, and 3% by weight of binder materials. Silica fume was used as a cement replacement material at dosages of 0% to 15% (intervals of 5%) by volume of cement. The unit weights, mechanical strengths, water absorption, and microstructural morphology were all evaluated. The concrete’s fresh and hardened densities were reduced with the increment in DPF and silica fume. The compressive strength declined at all ages with the increment in DPF addition, while the flexural and splitting tensile strengths improved with addition of up to 2% DPF. Furthermore, the concrete’s water absorption escalated with an increase in DPF content. Silica fume significantly enhanced the mechanical strength of the concrete. The dissipation in compressive strength with the addition of up to 2% DPF was mitigated by replacing up to 10% cement with silica fume, where it densified the microstructure and refined the interfacial transition zone between the fibers and cement matrix, hence significantly decreasing the porosity and enhancing durability.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700281
  • Publié(e) le:
    11.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine