0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Mechanical and Functional Property Investigation of 2-Layered Pervious Concrete

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: The Open Civil Engineering Journal, , n. 1, v. 16
DOI: 10.2174/18741495-v16-e220922-2022-ht31-3975-1
Abstrait:

Background

Pervious concrete pavements are considered as one of the well accepted stormwater management strategies as per environmental protection agencies. The interconnected pore structure in the pervious concrete allows the stormwater to percolate and thus reduce the runoff.

Methods

The laboratory and field investigations on the pervious concrete pavements have shown that the abrasion and clogging are major distresses that reduce the functional performance of these sustainable pavements. The open graded structure of the pervious concrete undergoes ravelling due to the vehicular movement and they may also allow the suspended particles in stormwater runoff to get clogged inside the pore structure. In this study, 2-layered pervious concrete was designed to balance the trade-offs between the strength and durability. The porosity and density of 2-layered pervious concrete was found to be in the domain on conventional pervious concrete.

Result

The failure pattern in compression indicated that failure of the specimen was concentrated on the bottom layer compared to the top layer. Further, the compressive strength was found to be in the range of 11.90 to 20.0 MPa. The pore distribution at the interface of the top and bottom aggregate was found to follow 3-parameter Weibull distribution, where the scale parameter increased as the aggregate size increased. The abrasion resistance was found to be lower compared to conventional pervious concrete.

Conclusion

Overall, it was found that 2-layered pervious concrete can be one of the alternatives to implement pervious concrete pavements addressing the demerits of conventional pervious concrete.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.2174/18741495-v16-e220922-2022-ht31-3975-1.
  • Informations
    sur cette fiche
  • Reference-ID
    10698099
  • Publié(e) le:
    11.12.2022
  • Modifié(e) le:
    11.12.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine