0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Machine learning‐based predictions of buckling behaviour of cold‐formed steel structural elements

Auteur(s): (College of Engineering and Physical Sciences, Aston University Birmingham B4 7ET UK)
(Department of Engineering University of Cambridge Cambridge CB2 1PZ UK)
(College of Engineering and Physical Sciences, Aston University Birmingham B4 7ET UK)
(Department of Civil and Structural Engineering The University of Sheffield Sheffield S1 3JD UK)
Médium: article de revue
Langue(s): anglais
Publié dans: ce/papers, , n. 3-4, v. 6
Page(s): 843-847
DOI: 10.1002/cepa.2727
Abstrait:

Designing thin‐walled structural members is a complex process due to the possibility of multiple instabilities. This study aimed to develop machine learning algorithms to predict the buckling behavior of thin‐walled channel elements under axial compression or bending. The algorithms were trained using feed‐forward multi‐layer Artificial Neural Networks (ANNs), with the input variables including the cross‐sectional dimensions, the thickness, the presence and location of intermediate stiffeners, and the element length. The output data included the elastic critical buckling load or moment, as well as a modal decomposition of the buckled shape into the pure buckling mode categories: local, distortional and global buckling. The Finite Strip Method (FSM) and the Equivalent Nodal Force Method (ENFM) were used to prepare the sample output for training. To ensure the accuracy of the developed algorithms, the ANN models were subjected to a K‐fold cross‐validation technique and featured optimized hyperparameters. The results showed that the trained algorithms had a remarkable accuracy of 98% in predicting the elastic critical buckling loads and modal decomposition of the critical buckled shapes.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/cepa.2727.
  • Informations
    sur cette fiche
  • Reference-ID
    10766907
  • Publié(e) le:
    17.04.2024
  • Modifié(e) le:
    17.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine