0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Machine Learning Prediction Model for Boundary Transverse Reinforcement of Shear Walls

Auteur(s): ORCID
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 14
Page(s): 427
DOI: 10.3390/buildings14020427
Abstrait:

Due to their roles as efficient lateral force-resisting systems, reinforced concrete shear walls exert a tremendous degree of influence on the overall seismic performance of buildings. The ability to predict the boundary transverse reinforcement of shear walls is critical to the seismic design process, as well as in the overall evaluation and retrofitting of existing buildings. Contemporary empirical models attain low predictive accuracy, with an inability to capture nonlinearity between boundary transverse reinforcement and different influencing variables. This study proposes a boundary transverse reinforcement prediction model for shear walls with boundary elements based on the demand of ductility. Using the extreme gradient boosting machine learning algorithm and 501 samples, some 52 input variables are considered, and a subset with six features is selected, monitored, and analyzed using both internal methods (gain and cover) and external methods. The results (R2=0.884) display superior predictive capacity compared with existing models. Interpretation and error analysis are performed. Safety analysis is conducted to obtain references for use in practical engineering. Overall, this study presents a more accurate tool for use in seismic design and provides references for the evaluation and retrofitting of existing buildings. Our contributions hold significant implications for enhancing the safety and resilience of reinforced concrete structures.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10760264
  • Publié(e) le:
    15.03.2024
  • Modifié(e) le:
    25.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine