0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete

Auteur(s): ORCID
ORCID

ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-15
DOI: 10.1155/2021/6682283
Abstrait:

In this research, multiexpression programming (MEP) has been employed to model the compressive strength, splitting tensile strength, and flexural strength of waste sugarcane bagasse ash (SCBA) concrete. Particle swarm optimization (PSO) algorithm was used to fine-tune the hyperparameter of the proposed MEP. The formulation of SCBA concrete was correlated with five input parameters. To train and test the proposed model, a large number of data were collected from the published literature. Afterward, waste SCBA was collected, processed, and characterized for partial replacement of cement in concrete. Concrete specimens with varying proportion of SCBA were prepared in the laboratory, and results were used for model validation. The performance of the developed models was then evaluated by statistical criteria and error assessment tests. The result shows that the performance of MEP with PSO algorithm significantly enhanced its accuracy. The essential input variables affecting the output were revealed, and the parametric analysis confirms that the models are accurate and have captured the essential properties of SCBA. Finally, the cross validation ensured the generalized capacity and robustness of the models. Hence, the adopted approach, i.e., MEP-based modeling with PSO, could be an effective tool for accurate modeling of the concrete properties, thus directly contributing to the construction sector by consuming waste and protecting the environment.

Copyright: © 2021 Muhammad Izhar Shah et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10589742
  • Publié(e) le:
    08.03.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine