Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions
Auteur(s): |
Tiago Tamagusko
Matheus Gomes Correia Adelino Ferreira |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, 11 décembre 2024, n. 12, v. 9 |
Page(s): | 213 |
DOI: | 10.3390/infrastructures9120213 |
Abstrait: |
Effective road pavement management is vital for maintaining the functionality and safety of transportation infrastructure. This review examines the integration of Machine Learning (ML) into Pavement Management Systems (PMS), presenting an analysis of state-of-the-art ML techniques, algorithms, and challenges for application in the field. We discuss the limitations of conventional PMS and explore how Artificial Intelligence (AI) algorithms can overcome these shortcomings by improving the accuracy of pavement condition assessments, enhancing performance prediction, and optimizing maintenance and rehabilitation decisions. Our findings indicate that ML significantly advances PMS capabilities by refining data collection processes and improving decision-making, thereby addressing the intricacies of pavement deterioration. Additionally, we identify technical challenges such as ensuring data quality and enhancing model interpretability. This review also proposes directions for future research to overcome these hurdles and to help stakeholders develop more efficient and resilient road networks. The integration of ML not only promises substantial improvements in managing pavements but is also in line with the increasing demands for smarter infrastructure solutions. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.59 MB
- Informations
sur cette fiche - Reference-ID
10812564 - Publié(e) le:
07.01.2025 - Modifié(e) le:
25.01.2025