Local Climate Zone in Xi’an City: A Novel Classification Approach Employing Spatial Indicators and Supervised Classification
Auteur(s): |
Duo Xu
Qian Zhang Dian Zhou Yujun Yang Yiquan Wang Alessandro Rogora |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 26 octobre 2023, n. 11, v. 13 |
Page(s): | 2806 |
DOI: | 10.3390/buildings13112806 |
Abstrait: |
The Local Climate Zone (LCZ), as a foundational element of urban climate zone classification proposed by Oke and Stewart, categorizes urban surface types based on 10 influential parameters affecting the urban heat island effect, such as building density, surface reflectivity, sky view factor, and surface roughness length. This method divides cities into 17 different Local Climate Zones (LCZs) to standardize climate observations and promote global climate research exchange, offering valuable insights for heat island studies. In this study, we enhance the existing local climate zones spatial classification approach by focusing on Xi’an city’s urban layout and architectural features. By using urban spatial indicators and employing a supervised classification approach and a spatial clustering method with land parcels as statistical units, we investigate typical urban areas and classify Xi’an’s land parcels into 17 or 15 distinct local climate zones. Subsequently, through the evaluation of two distinct classification methods, the most suitable urban microclimate zoning method for Xi’an city was selected. This optimization of the local climate zoning representation introduces a spatial classification method tailored to urban climate planning and control, utilizing urban spatial indicators and remote sensing data. The resulting urban climate zoning map not only supports sample selection for urban heat environment parameter observation but also aids urban planners in identifying spatial distribution patterns for climate zoning. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.38 MB
- Informations
sur cette fiche - Reference-ID
10753696 - Publié(e) le:
14.01.2024 - Modifié(e) le:
07.02.2024