Load Capacity Prediction of Corroded Steel Plates Reinforced with Adhesive and High-Strength Bolts Using a Particle Swarm Optimization Machine Learning Model
Auteur(s): |
Xianling Zhou
Ming Li Qicai Li Guohua Sun Wenyuan Liu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 23 juillet 2024, n. 8, v. 14 |
Page(s): | 2351 |
DOI: | 10.3390/buildings14082351 |
Abstrait: |
A machine learning (ML) model, optimized by the Particle Swarm Optimization (PSO) algorithm, was developed in this study to predict the shear slip load of adhesive/bolt-reinforced corroded steel plates. An extensive database comprising 490 experimental or numerical specimens was initially employed to train the ML models. Eight ML algorithms (RF, AdaBoost, XGBoost, GBT, SVR, kNN, LightGBM, and CatBoost) were utilized for shear slip load prediction, with their hyperparameters set to default values. Subsequently, the PSO algorithm was employed to optimize the hyperparameters of the above ML algorithms. Finally, performance metrics, error analysis, and score analysis were employed to evaluate the prediction capabilities of the optimized ML models, identifying PSO-GBT as the optimal predictive model. A user-friendly graphical user interface (GUI) was also developed to facilitate engineers using the PSO-GBT model developed in this study to predict the shear slip load of adhesive/bolt-reinforced corroded steel plates. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.43 MB
- Informations
sur cette fiche - Reference-ID
10795321 - Publié(e) le:
01.09.2024 - Modifié(e) le:
25.01.2025