Kirigami-inspired self-powered pressure sensor based on shape fixation treatment in IPMC material
Auteur(s): |
Jen-Hahn Low
Pei-Song Chee Eng-Hock Lim Vinod Ganesan |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Smart Materials and Structures, 4 janvier 2024, n. 2, v. 33 |
Page(s): | 025029 |
DOI: | 10.1088/1361-665x/ad1def |
Abstrait: |
Rapid advances in sensing technologies have brought about the fast development of wearable electronics for biomedical applications. Since its conception, over the years, the ionic polymer metal composite (IPMC) is a new man-made material that has demonstrated its great potential for wearable devices due to self-powered sensing capabilities. Here, for the first time, a novel Kirigami technique with unique cut patterns has been employed for designing a stretchable IPMC sensor with enhanced performance. As Nafion itself exhibits the characteristic of shape memory polymer, the Kirigami structure that is built using the IPMC can be buckled up by loading and heating the IPMC above the deformation temperature, T def. To further enhance the memory effect, the Kirigami structure has further been locked by immersing it in potassium hydroxide for the formation of deprotonated Nafion. The voltage output of the proposed IPMC with Kirigami shows a superior performance with 3 times improvement over the conventionally planar electrodes. Dynamic tests with a range of displacements have been performed to validate the sensor design and the robustness of the Kirigami structure. This novel Kirigami-based IPMC sensor has been successfully demonstrated for braille sensing by designing 7 independent electrodes. |
- Informations
sur cette fiche - Reference-ID
10758196 - Publié(e) le:
23.03.2024 - Modifié(e) le:
23.03.2024