0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A joint fraction function regularization model for the structural damage identification

Auteur(s): ORCID






Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Structural Engineering, , n. 2, v. 27
Page(s): 253-268
DOI: 10.1177/13694332231218763
Abstrait:

The sparse regularization (SReg) model has been prove to be an effective tool for the structural damage identification. However, the SReg model overly penalizes the larger components in the damage parameter leading to extra estimation bias, and it ignores the similarity information among different measurements that is useful for improving the performance of damage identification. To further improve the accuracy of damage identification, this study proposes a joint fraction function regularization model by jointing multiple fraction function regularization models, where fraction function regularizers are utilized to overcome the excessive penalty drawback, and the similarity of different measurements is employed through a data fusion technique. The numerical and experimental study show that, compared with the previous SReg models, the damage identification errors of the proposed model are reduced by 4.15% and 2.12% on average, respectively.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/13694332231218763.
  • Informations
    sur cette fiche
  • Reference-ID
    10749780
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    14.01.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine