A joint fraction function regularization model for the structural damage identification
Auteur(s): |
Rongpeng Li
Yilin Wang Hongwei Jiang Yanhong Zhang Lingjuan Ma Fan Yang Xueli Song |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Structural Engineering, 11 décembre 2023, n. 2, v. 27 |
Page(s): | 253-268 |
DOI: | 10.1177/13694332231218763 |
Abstrait: |
The sparse regularization (SReg) model has been prove to be an effective tool for the structural damage identification. However, the SReg model overly penalizes the larger components in the damage parameter leading to extra estimation bias, and it ignores the similarity information among different measurements that is useful for improving the performance of damage identification. To further improve the accuracy of damage identification, this study proposes a joint fraction function regularization model by jointing multiple fraction function regularization models, where fraction function regularizers are utilized to overcome the excessive penalty drawback, and the similarity of different measurements is employed through a data fusion technique. The numerical and experimental study show that, compared with the previous SReg models, the damage identification errors of the proposed model are reduced by 4.15% and 2.12% on average, respectively. |
- Informations
sur cette fiche - Reference-ID
10749780 - Publié(e) le:
14.01.2024 - Modifié(e) le:
14.01.2024