0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Investigation on Load Path of a Latticed Shell Structure under Localized Fire Based on Member Sensitivity

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 12
Page(s): 1938
DOI: 10.3390/buildings12111938
Abstrait:

Thermal expansion of a member can affect structural bearing capacity when one or more members are subjected to fire. To explore the developmental rule of member internal force in latticed shell structure, a computation method of member sensitivity is presented based on the alternate path method. Taking a K8 single-layer latticed shell structure as the analysis object, finite element models are established by ANSYS, applying temperature loads on radial and circumferent ribs, calculating the sensitivity of each member during heating, and exploring the rule of member sensitivity at different temperatures. It is revealed from the numerical results that when one member is in fire, member sensitivity is proportional to temperature and inversely proportional to the distance from the member subjected to fire. Taking the member sensitivity coefficient as an index, the internal force will be transmitted along the member with high sensitivity, the rule of load path and internal force redistribution is given when the latticed shell structure is under elevated temperature.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700152
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    19.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine