0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Investigation on bearing resistance of thin-walled circular steel tube subjected to eccentric loading

Auteur(s): ORCID




ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Structural Engineering, , n. 8, v. 27
Page(s): 1429-1444
DOI: 10.1177/13694332241253395
Abstrait:

In the engineering structures using circular steel tube (CST), the eccentric loading of CST members often occurs due to installation error and structural form. Existing research mainly focuses on the bearing resistance of circular steel pipes under the condition of eccentricity at one end. In practical application, both ends of CST members also may be eccentric. And with the increase in eccentricity, material yielding may occur prior to flexural buckling. So far, it’s lack of reports about the mechanical behavior of CST members subjected to eccentric loading at both ends and the boundary between material yielding and flexural buckling. This paper presents experimental, numerical and theoretical studies on bearing resistance of thin-walled circular steel tube with slenderness ratio of 30, 40 and 50, subjected to eccentric loading at one end and both ends, respectively. The study reveals a significant discrepancy in the prediction of bearing resistance for circular tubes subjected to eccentric loading at both ends according to existing design codes. Considering the synthesis of bending moment and deflection caused by eccentric loading at both ends, the calculation method of the bearing resistance based on flexural buckling of CST is established, which enhances the prediction accuracy of test verification. In addition, a theoretical boundary between the two failure modes appearing in CST members under eccentric loading at one and both end(s) - flexural buckling and reaching the material yielding strength - was established as dominated by the slenderness ratio and loading eccentricity.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/13694332241253395.
  • Informations
    sur cette fiche
  • Reference-ID
    10784766
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine