0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Investigation of the Post-Fire Behavior of Different End-Plated Beam–Column Connections

Auteur(s):
ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 4, v. 14
Page(s): 1013
DOI: 10.3390/buildings14041013
Abstrait:

Heat affects the mechanical properties of steel and the bearing capacity of steel structures, with joints being a crucial factor in determining their behavior. Steel can regain its mechanical properties that are lost owing to heat if the temperature remains below 600 °C, allowing for the possibility of reusing steel after cooling. In such cases, it becomes essential to assess the damage caused by heat exposure to decide whether to demolish the structure or continue using it. However, continuing its usage requires anticipating the potential negative effects of heat. To achieve this, it is necessary to determine the behavior of steel joining tools experimentally or numerically after exposure to heat. This study aims to ascertain the post-fire behavior of various end-plated beam and column connections, providing a cost-effective alternative to expensive fire experiments. Three different end-plated combination models were heated to a specified temperature, and steel frames were constructed after the elements cooled. Six three-point bending tests were conducted, and the experimental data obtained were validated using finite element models. The results indicate that the temperature causes a reduction in the bearing capacity of the joint, and the length of the end plate has a significant effect on the connection behavior. The finite element model validated by experiments is expected to facilitate numerical studies with different characteristics.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10773663
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine