0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Interpretation of fatigue lifetime prediction by machine learning modeling in piston aluminum alloys under different manufacturing and loading conditions

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Frattura ed Integrità Strutturale, , n. 68, v. 18
Page(s): 357-370
DOI: 10.3221/igf-esis.68.24
Abstrait:

Various input variables, including corrosion time, fretting force, stress, lubrication, heat-treating, and nano-particles, were evaluated by modeling of stress-controlled fatigue lifetimes in AlSi12CuNiMg aluminum alloy of the engine pistons with different machine learning (ML) techniques. Bending fatigue experiments were conducted through cyclic loading with zero mean stress, and then experimental data was predicted by five different ML-based models. Moreover, when the optimal ML prediction model was found, it was analyzed using the Shapley additive explanation (SHAP) values method. Results illustrated that extreme gradient boosting (XGBoost) had superior data for estimations, with average training coefficients of determination of at least 63% and 90%, respectively for fatigue lifetime and its logarithmic value. The SHAP values interpretation of the XGBoost model revealed that fretting force, stress, and corrosion time were the most significant inputs in estimating the logarithm values of fatigue lifetimes, respectively.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3221/igf-esis.68.24.
  • Informations
    sur cette fiche
  • Reference-ID
    10776323
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    29.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine