0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Intelligent Prediction and Application Research on Soft Rock Tunnel Deformation Based on the ICPO-LSTM Model

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 7, v. 14
Page(s): 2244
DOI: 10.3390/buildings14072244
Abstrait:

In tunnel construction, the prediction of the surrounding rock deformation is related to the construction safety and stability of the tunnel structure. In order to achieve an accurate prediction of the surrounding rock deformation in soft rock tunnel construction, a Long Short-Term Memory (LSTM) neural network is used to construct a prediction model of the vault settlement and the horizontal convergence of the upper conductor in soft rock tunnels. The crested porcupine optimisation (CPO) algorithm is used to realise the hyper-parameter optimisation of the LSTM model and to construct the framework of the calculation process of the CPO-LSTM model. Taking the soft rock section of the Baoshishan Tunnel as an example, the large deformation of the surrounding rock is measured and analysed in situ, and the monitoring data of arch settlement and superconducting level convergence are obtained, which are substituted into the CPO-LSTM model for calculation, and compared and analysed with traditional machine learning and optimisation algorithms. The results show that the CPO-LSTM model has an R2 of 0.9982, a MAPE of 0.8595% and an RMSE of 0.1922, which are the best among all the models. In order to further improve the optimisation capability of the CPO, some improvements were made to the CPO and an Improved Crested Porcupine Optimiser (ICPO) was proposed. The ICPO-LSTM prediction model was established, and the ZK6 + 834 section was selected as a research object for comparison and analysis with the CPO-LSTM model. The results of the error analysis show that the prediction accuracy of the improved ICPO-LSTM model has been further improved, and the prediction accuracy of the model meets the requirements of guiding construction.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10795296
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine